Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

2,4,6-Tris[2-(trimethylsilyl)ethynyl]-1,3,5-triazene: a novel precursor to C-N twodimensional structures

Kouvetakis and Groy

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C **Crystal Structure** Communications

ISSN 0108-2701

2,4,6-Tris[2-(trimethylsilyl)ethynyl]-1,3,5-triazene: a novel precursor to C-N two-dimensional structures

John Kouvetakis^a* and Thomas L. Groy^b

^aDepartment of Chemistry and Biochemistry, Goldwater Center for Science and Engineering, Arizona State University, Tempe, AZ 85287-1604, USA, and ^bDepartemistry, Arizona State University, Tempe, AZ 85287-1604, USA Correspondence e-mail: jkouvetakis@asu.edu

Received 27 September 2000 Accepted 9 October 2000

Data validation number: IUC0000285

The title structure, C₁₈H₂₇N₃Si₃, consists of separate molecules arranged in sheets parallel to the *ab* plane. In each molecule, the central (CN)₃ ring, the ethynyl units, and the Si atoms lie in the same plane. Typical C-C and C-N bond distances are 1.197 (5) and 1.42 (4) Å, respectively. The angles inside the $(CN)_3$ ring range from 114 (3) to 125 (3)° and the acetylenic branches are nearly linear.

Comment

There has been considerable ongoing research toward the synthesis of novel forms of carbon and related two-dimensional polymers that contain heteroatoms (N, B, S) in the graphitic structure (Nieman & Whitesides, 1988; Callstrom et al., 1990). We are particularly interested in the preparation of similar low-dimensional hydrogen-free solids that are electrically conductive, stable in ambient atmosphere, and refractory. An example of a target material involves (CN)₃ aromatic rings linked by ethynyl units in a sheet-like structure. Efforts to prepare trimethylsilyl-substituted ethynyl precursors of such materials led us to the synthesis of 2,4,6-tris[2-(trimethylsilyl)ethynyl]-1,3,5-triazene, (I).

The structure consists of individual molecules packed into the unit cell with no unusually short intermolecular contacts. The packing is in sheets parallel to the *ab* plane. Each molecule is planar with the exception of its methyl groups. The maximum deviation from the least-squares plane through the (CN)₃ central framework and the acetylenic branches including the Si atoms is 0.1 Å. The molecule is, however, slightly distorted; the ring angles deviate from 120° at N1-C7-N2 [125.5 (3)°] and opposite to this at C1-N3-C13 $[114.0 (3)^{\circ}]$. This distortion presumably originates from packing effects in the solid state. The distances in the central ring and the acetylenic branches appear to be normal.

Experimental

The title compound, (I), was prepared by reacting trifluorotriazene with lithium trimethylsilylacetylide in hexane at 195 K (Kouvetakis et al., 1994). Clear colourless crystals were grown by sublimation in a temperature gradient under high vacuum.

Crystal data

$C_{18}H_{27}N_3Si_3$ $M_r = 369.70$	$D_x = 1.029 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 24
a = 11.265 (2) Å	reflections
b = 19.946 (4) A	$\theta = 13-14^{\circ}$
c = 10.927 (2) Å	$\mu = 0.203 \text{ mm}^{-1}$
$\beta = 103.65 \ (3)^{\circ}$	T = 167 (2) K
$V = 2385.9 (8) \text{ Å}^3$	Cleaved fragment, colourless
Z = 4	$0.52 \times 0.27 \times 0.25 \text{ mm}$
Data collection	
Enraf-Nonius CAD-4 diffract-	2716 reflections with $I > 2\sigma(I)$
ometer	$\theta_{\rm max} = 24.98^{\circ}$
θ –2 θ scans	$h = 0 \rightarrow 13$
Absorption correction: ψ scan	$k = 0 \rightarrow 23$
(North <i>et al.</i> , 1968)	$l = -12 \rightarrow 12$
$T_{\rm min} = 0.852, T_{\rm max} = 0.998$	3 standard reflections
4194 measured reflections	frequency: 60 min
4194 independent reflections	intensity decay: none
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_2^2) + (0.0559P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.060$	+ 2.2202P]

R $wR(F^2) = 0.158$

S = 1.0664194 reflections 218 parameters H-atom parameters constrained

 $(559P)^{2}$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.007$ $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0046 (9)

 $I > 2\sigma(I)$

Data collection, cell refinement and data reduction: CAD-4 Software (Enraf-Nonius, 1989); program(s) used to solve and refine structure, and prepare material for publication: SHELXTL (Sheldrick, 1997).

The authors wish to thank Dr F. J. Hollander at the UC Berkeley X-ray Facility (CHEXRAY) for performing the crystal structure analysis.

References

- Callstrom, M. R., Nieman, T. X., McGreery, R. L. & Alsmeyer, D. C. (1990). J. Am. Chem. Soc. 112, 4954-4956.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Kouvetakis, J., Grotjahn, D., Becker, P. & Moore, S. (1994). Chem. Mater. 6, 636-639.
- Nieman, T. X. & Whitesides, G. M. (1988). J. Org. Chem. 53, 2489-2496.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.03. Bruker AXS Inc., Madison, Wisconsin, USA.